【欧拉计划】33. Digit cancelling fractions
(本题取 $n=9$)
【思路】题目描述得有些模糊,要求我们找到两个十位数 $a,b$($a \lt b$),使得 $a$ 的十位数和 $b$ 的个位数相等,同时使得 $\dfrac{a}{b}$ 与 $a,b$ 分别删去相同位数之后的商相等。
由于有两个数位相等,因此我们只需要枚举三个数位,这样就可以在 $\mathcal O(n^3)$ 枚举出所有的情况。约分需要用到 $\gcd$,因此最终时间复杂度为 $\mathcal O(n^3 \log n)$: