【欧拉计划】18. Maximum path sum I

(本题取 $n=16$)

【思路】暴力 DFS,时间复杂度为 $\mathcal O(2^n)$。

【优化】采用 $\mathcal O(n^2)$ 的 DP:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include<stdio.h>
int dp[16][16],ans;
int max(int a,int b){return a>b?a:b;}
const int matrix[16][16]=
{
{0},
{0,75},
{0,95,64},
{0,17,47,82},
{0,18,35,87,10},
{0,20,04,82,47,65},
{0,19,01,23,75,03,34},
{0,88,02,77,73,07,63,67},
{0,99,65,04,28,06,16,70,92},
{0,41,41,26,56,83,40,80,70,33},
{0,41,48,72,33,47,32,37,16,94,29},
{0,53,71,44,65,25,43,91,52,97,51,14},
{0,70,11,33,28,77,73,17,78,39,68,17,57},
{0,91,71,52,38,17,14,91,43,58,50,27,29,48},
{0,63,66,04,68,89,53,67,30,73,16,69,87,40,31},
{0,04,62,98,27,23,9,70,98,73,93,38,53,60,04,23}
};
int main()
{
for(int i=1;i<=15;++i)
{
for(int j=1;j<=i;++j)
{
dp[i][j]=max(dp[i-1][j-1],dp[i-1][j])+matrix[i][j];
}
}
for(int i=1;i<=15;++i)ans=max(ans,dp[15][i]);
printf("%d",ans);
return 0;
}

【欧拉计划】18. Maximum path sum I

https://hensier.github.io/projecteuler/18/

作者

hensier

发布于

2022-05-01

更新于

2023-01-02

许可协议

评论